Solution 4

1. Prove Hölder's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, p>1$ and q conjugate to p,

$$
|\mathbf{x} \cdot \mathbf{y}| \leq\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}\left(\sum_{j=1}^{n}\left|y_{j}\right|^{q}\right)^{1 / q} .
$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

Solution. Dividing $[0,1]$ equally into n many subintervals I_{j} and set $f(x)=x_{j}, g(x)=y_{j}$, for $x \in\left(x_{j}, x_{j+1}\right]$, Hölder's inequality for vectors follows from the same inequality for f and g.
2. Prove Minkowski's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, p>1$,

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p} .
$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.
Solution. Same as in the previous problem.
3. Prove the generalized Hölder's Inequality: For $f_{1}, f_{2}, \cdots, f_{n} \in R[a, b]$,

$$
\int_{a}^{b}\left|f_{1} f_{2} \cdots f_{n}\right| d x \leq\left(\int_{a}^{b}\left|f_{1}\right|^{p_{1}}\right)^{1 / p_{1}}\left(\int_{a}^{b}\left|f_{2}\right|^{p_{2}}\right)^{1 / p_{2}} \cdots\left(\int_{a}^{b}\left|f_{n}\right|^{p_{n}}\right)^{1 / p_{n}}
$$

where

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{n}}=1, \quad p_{1}, p_{2}, \cdots, p_{n}>1 .
$$

Solution. Induction on n. $n=2$ is the original Hölder, so it holds. Let

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{n+1}}=1 .
$$

First, using the original Hölder, we have

$$
\int_{a}^{b}\left|f_{1} f_{2} \cdots f_{n+1}\right| d x \leq\left(\int_{a}^{b}\left|f_{1}\right|^{p_{1}} d x\right)^{1 / p_{1}}\left(\int_{a}^{b}\left|f_{2} \cdots f_{n+1}\right|^{q} d x\right)^{1 / q}
$$

where q is conjugate to p_{1}. It is easy to see

$$
1=\frac{q}{p_{2}}+\cdots+\frac{q}{p_{n+1}} .
$$

By induction hypothesis,

$$
\int_{a}^{b}\left|f_{2}^{q} \cdots f_{n+1}^{q}\right| d x \leq\left(\int_{a}^{b}\left|f_{2}\right|^{p_{2}} d x\right)^{1 / p_{2}} \cdots\left(\int_{a}^{b}\left|f_{n+1}\right|^{p_{n+1}} d x\right)^{1 / p_{n+1}}
$$

done.
4. Show that for $1 \leq p<r \leq \infty$,
(a)

$$
\|\mathbf{x}\|_{p} \leq n^{\frac{1}{p}-\frac{1}{r}}\|\mathbf{x}\|_{r}
$$

(b)

$$
\|\mathbf{x}\|_{r} \leq n^{\frac{1}{r}}\|\mathbf{x}\|_{p}
$$

Solution. (a)

$$
\begin{aligned}
\|\mathbf{x}\|_{p}^{p} & =\sum\left|x_{j}\right|^{p} \\
& \leq\left(\sum\left|x_{j}\right|^{\frac{r}{p}}\right)^{\frac{p}{r}}\left(\sum 1^{\frac{r}{r-p}}\right)^{\frac{r-p}{r}} \\
& =n^{\frac{r-p}{r}}\|\mathbf{x}\|_{r}^{p}
\end{aligned}
$$

so

$$
\|\mathbf{x}\|_{p} \leq n^{\frac{1}{p}-\frac{1}{r}}\|\mathbf{x}\|_{r}
$$

(b) First of all, $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{p}$. Then,

$$
\begin{aligned}
\|\mathbf{x}\|_{r} & \leq\left(n\|\mathbf{x}\|_{\infty}^{r}\right)^{\frac{1}{r}} \\
& \leq n^{\frac{1}{r}}\|\mathbf{x}\|_{\infty} \\
& \leq n^{\frac{1}{r}}\|\mathbf{x}\|_{p} .
\end{aligned}
$$

5. Establish the inequality, for $f \in R[a, b],\|f\|_{p} \leq C\|f\|_{r}$ when $1 \leq p<r$ for some constant C.
Solution By Holder's Inequality,

$$
\int_{a}^{b}|f|^{p} \leq\left(\int_{a}^{b} 1 d x\right)^{1-p / r}\left(\int_{a}^{b}|f|^{\frac{p}{p}} d x\right)^{p / r} \leq C^{p}\|f\|_{r}^{p}
$$

where

$$
C=(b-a)^{\frac{1}{p}-\frac{1}{r}} .
$$

6. Show that there is no constant C such that $\|f\|_{2} \leq C\|f\|_{1}$ for all $f \in C[0,1]$.

Solution Consider the sequence

$$
f_{n}(x)= \begin{cases}-n^{3} x+n, & x \in\left[0,1 / n^{2}\right] \\ 0, & x \in\left(1 / n^{2}, 1\right]\end{cases}
$$

We have $\left\|f_{n}\right\|_{1}=1 /(2 n) \rightarrow 0$ as $n \rightarrow \infty$, but $\left\|f_{n}\right\|_{2}=1 / \sqrt{3}$ for all n. Hence, it is impossible to have some C satisfying $\|f\|_{2} \leq C\|f\|_{1}$ for all f.
Note. In general, it is impossible to find a constant C such that $\|f\|_{r} \leq C\|f\|_{p}, p<r$, for all f.
7. Show that $\|\cdot\|_{p}$ is no longer a norm on \mathbb{R}^{n} for $p \in(0,1)$.

Solution Again (N3) is bad. Consider two n-tuples $\mathbf{x}=(1,0,0, \ldots, 0)$ and $\mathbf{y}=(0,1,0, \ldots, 0)$.
We have $\|\mathbf{x}+\mathbf{y}\|_{p}=2^{1 / p}$ but $\|\mathbf{x}\|_{p}=\|\mathbf{y}\|_{p}=1$, so $\|\mathbf{x}+\mathbf{y}\|_{p}>\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}$.
8. In a metric space (X, d), its metric ball is the set $\{y \in X: d(y, x)<r\}$ where x is the center and r the radius of the ball. May denote it by $B_{r}(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_{2}, d_{∞} and d_{1} on \mathbb{R}^{2}.

Solution. The unit ball $B_{1}^{2}(0)$ is the standard one, the unit ball in d_{∞}-metric consists of points (x, y) either $|x|$ or $|y|$ is equal to 1 and $|x|,|y| \leq 1$, so $B_{1}^{\infty}(0)$ is the square of side length 2 centered at the origin. The unit ball $B_{1}^{1}(0)$ consists of points (x, y) satisfying $|x|+|y| \leq 1$, so the boundary is described by the curves $x+y=1, x, y \geq 0, x-y=1, x \geq$ $0, y \leq 0,-x+y=1, x \leq 0, y \geq 0$, and $-x-y=1, x, y \leq 0$. The result is the tilted square with vertices at $(1,0),(0,1),(-1,0)$ and $(0,-1)$.
9. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, $d(x, y)=1$ if $x \neq y$.
Solution. When $r \in(0,1], B_{r}(x)=\{x\}$. When $r>1, B_{r}(x)=X$.
10. Consider the functional Φ defined on $C[a, b]$

$$
\Phi(f)=\int_{a}^{b} \sqrt{1+f^{2}(x)} d x
$$

Show that it is continuous in $C[a, b]$ under both the supnorm and the L^{1}-norm. A realvalued function defined on a space of functions is traditionally called a functional.
Solution. Let $h(y)=\sqrt{1+y^{2}}$. Then $\Phi(f)=\int_{a}^{b} h(f) d x$. Since $h^{\prime}(y)=\frac{y}{\sqrt{1+y^{2}}} \leq 1$, one has, by the mean value theorem

$$
\begin{aligned}
|\Phi(f)-\Phi(g)| & \leq \int_{a}^{b}|h(f)-h(g)| d x \leq \int_{a}^{b}|f-g| \max _{s \in(g, f)}\left|h^{\prime}(s)\right| d x \\
& \leq \int_{a}^{b}|f-g| d x
\end{aligned}
$$

Hence it is continuous in $C[a, b]$ under the d_{1}-distance. As d_{∞} is stronger than d_{1}, the functional is also continuous in d_{∞}.
11. Consider the functional Ψ defined on $C[a, b]$ given by $\Psi(f)=f\left(x_{0}\right)$ where $x_{0} \in[a, b]$ is fixed. Show that it is continuous in the supnorm but not in the L^{1}-norm. Suggestion: Produce a sequence $\left\{f_{n}\right\}$ with $\left\|f_{n}\right\|_{1} \rightarrow 0$ but $f_{n}\left(x_{0}\right)=1, \forall n$. Ψ is called an evaluation map.
Solution. Take $[a, b]=[-1,1]$ and $x_{0}=0$. Note $|\Psi(f)-\Psi(g)|=|f(0)-g(0)| \leq$ $\max _{x \in[-1,1]}|f(x)-g(x)|$. Hence it is continuous in the d_{∞}-metric. Let f_{n} be a continuous function such that $f_{n}(x)=1, x \in[-1 / n, 1 / n] ; f_{n}(x)=0, x \in[-2 / n, 2 / n]$, and $0 \leq f_{n} \leq 1$. Then $\Psi\left(f_{n}\right)=1$ but $f_{n} \rightarrow 0$ in the d_{1}-metric.

