Solution 4

1. Prove Hölder's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1 and q conjugate to p,

$$|\mathbf{x} \cdot \mathbf{y}| \le \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} \left(\sum_{j=1}^n |y_j|^q\right)^{1/q}$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

Solution. Dividing [0, 1] equally into n many subintervals I_j and set $f(x) = x_j$, $g(x) = y_j$, for $x \in (x_j, x_{j+1}]$, Hölder's inequality for vectors follows from the same inequality for f and g.

2. Prove Minkowski's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1,

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

Solution. Same as in the previous problem.

3. Prove the generalized Hölder's Inequality: For $f_1, f_2, \dots, f_n \in R[a, b]$,

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n}| dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}}\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}|^{p_{2}}\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n}|^{p_{n}}\right)^{1/p_{n}} ,$$

where

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} = 1, \quad p_1, p_2, \dots, p_n > 1.$$

Solution. Induction on n. n = 2 is the original Hölder, so it holds. Let

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{n+1}} = 1$$
.

First, using the original Hölder, we have

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n+1}| \, dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}} \, dx\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}\cdots f_{n+1}|^{q} \, dx\right)^{1/q} \, ,$$

where q is conjugate to p_1 . It is easy to see

$$1 = \frac{q}{p_2} + \dots + \frac{q}{p_{n+1}}$$
.

By induction hypothesis,

$$\int_{a}^{b} |f_{2}^{q} \cdots f_{n+1}^{q}| \, dx \le \left(\int_{a}^{b} |f_{2}|^{p_{2}} \, dx\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n+1}|^{p_{n+1}} \, dx\right)^{1/p_{n+1}}$$

,

done.

4. Show that for $1 \leq p < r \leq \infty$,

(a)

$$\|\mathbf{x}\|_p \le n^{\frac{1}{p} - \frac{1}{r}} \|\mathbf{x}\|_r \;,$$

(b)

$$\|\mathbf{x}\|_r \le n^{\frac{1}{r}} \|\mathbf{x}\|_p.$$

Solution. (a)

$$\|\mathbf{x}\|_{p}^{p} = \sum |x_{j}|^{p}$$

$$\leq \left(\sum_{r \geq p} |x_{j}|^{p}\right)^{\frac{p}{r}} \left(\sum_{r \geq p} 1^{\frac{r}{r-p}}\right)^{\frac{r-p}{r}}$$

$$= n^{\frac{r-p}{r}} \|\mathbf{x}\|_{r}^{p}$$

 \mathbf{SO}

$$\|\mathbf{x}\|_p \le n^{\frac{1}{p} - \frac{1}{r}} \|\mathbf{x}\|_r .$$

(b) First of all, $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{p}$. Then,

$$\begin{aligned} \|\mathbf{x}\|_r &\leq (n\|\mathbf{x}\|_{\infty}^r)^{\frac{1}{r}} \\ &\leq n^{\frac{1}{r}}\|\mathbf{x}\|_{\infty} \\ &\leq n^{\frac{1}{r}}\|\mathbf{x}\|_p . \end{aligned}$$

5. Establish the inequality, for $f \in R[a, b]$, $||f||_p \leq C ||f||_r$ when $1 \leq p < r$ for some constant C.

Solution By Holder's Inequality,

$$\int_{a}^{b} |f|^{p} \le \left(\int_{a}^{b} 1 \, dx\right)^{1-p/r} \left(\int_{a}^{b} |f|^{p\frac{r}{p}} \, dx\right)^{p/r} \le C^{p} ||f||_{r}^{p}$$

where

$$C = (b-a)^{\frac{1}{p} - \frac{1}{r}} .$$

6. Show that there is no constant C such that $||f||_2 \leq C ||f||_1$ for all $f \in C[0, 1]$. Solution Consider the sequence

$$f_n(x) = \begin{cases} -n^3 x + n, & x \in [0, 1/n^2], \\ 0, & x \in (1/n^2, 1]. \end{cases}$$

We have $||f_n||_1 = 1/(2n) \to 0$ as $n \to \infty$, but $||f_n||_2 = 1/\sqrt{3}$ for all n. Hence, it is impossible to have some C satisfying $||f||_2 \le C||f||_1$ for all f.

Note. In general, it is impossible to find a constant C such that $||f||_r \le C ||f||_p, p < r$, for all f.

7. Show that $\|\cdot\|_p$ is no longer a norm on \mathbb{R}^n for $p \in (0, 1)$.

Solution Again (N3) is bad. Consider two *n*-tuples $\mathbf{x} = (1, 0, 0, ..., 0)$ and $\mathbf{y} = (0, 1, 0, ..., 0)$. We have $\|\mathbf{x} + \mathbf{y}\|_p = 2^{1/p}$ but $\|\mathbf{x}\|_p = \|\mathbf{y}\|_p = 1$, so $\|\mathbf{x} + \mathbf{y}\|_p > \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$. 8. In a metric space (X, d), its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_∞ and d_1 on \mathbb{R}^2 .

Solution. The unit ball $B_1^2(0)$ is the standard one, the unit ball in d_{∞} -metric consists of points (x, y) either |x| or |y| is equal to 1 and $|x|, |y| \leq 1$, so $B_1^{\infty}(0)$ is the square of side length 2 centered at the origin. The unit ball $B_1^1(0)$ consists of points (x, y) satisfying $|x| + |y| \leq 1$, so the boundary is described by the curves $x + y = 1, x, y \geq 0, x - y = 1, x \geq 0, y \leq 0, -x + y = 1, x \leq 0, y \geq 0$, and $-x - y = 1, x, y \leq 0$. The result is the tilted square with vertices at (1, 0), (0, 1), (-1, 0) and (0, -1).

9. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, d(x, y) = 1 if $x \neq y$.

Solution. When $r \in (0, 1]$, $B_r(x) = \{x\}$. When $r > 1, B_r(x) = X$.

10. Consider the functional Φ defined on C[a, b]

$$\Phi(f) = \int_a^b \sqrt{1 + f^2(x)} \ dx.$$

Show that it is continuous in C[a, b] under both the supnorm and the L^1 -norm. A real-valued function defined on a space of functions is traditionally called a functional.

Solution. Let $h(y) = \sqrt{1+y^2}$. Then $\Phi(f) = \int_a^b h(f) dx$. Since $h'(y) = \frac{y}{\sqrt{1+y^2}} \le 1$, one has, by the mean value theorem

$$\begin{aligned} |\Phi(f) - \Phi(g)| &\leq \int_a^b |h(f) - h(g)| dx \leq \int_a^b |f - g| \max_{s \in (g, f)} |h'(s)| dx \\ &\leq \int_a^b |f - g| dx. \end{aligned}$$

Hence it is continuous in C[a, b] under the d_1 -distance. As d_{∞} is stronger than d_1 , the functional is also continuous in d_{∞} .

11. Consider the functional Ψ defined on C[a, b] given by $\Psi(f) = f(x_0)$ where $x_0 \in [a, b]$ is fixed. Show that it is continuous in the supnorm but not in the L^1 -norm. Suggestion: Produce a sequence $\{f_n\}$ with $||f_n||_1 \to 0$ but $f_n(x_0) = 1$, $\forall n$. Ψ is called an evaluation map.

Solution. Take [a,b] = [-1,1] and $x_0 = 0$. Note $|\Psi(f) - \Psi(g)| = |f(0) - g(0)| \le \max_{x \in [-1,1]} |f(x) - g(x)|$. Hence it is continuous in the d_{∞} -metric. Let f_n be a continuous function such that $f_n(x) = 1, x \in [-1/n, 1/n]; f_n(x) = 0, x \in [-2/n, 2/n]$, and $0 \le f_n \le 1$. Then $\Psi(f_n) = 1$ but $f_n \to 0$ in the d_1 -metric.